Changqing Li, Yile Fang, Michael Lun, Ignacio O Romero July 1, 2021
X-ray fluorescence computed tomography (XFCT) is a molecular imaging technique that can be used to sense different elements or nanoparticle (NP) agents inside deep samples or tissues. However, XFCT has not been a popular molecular imaging tool because it has limited molecular sensitivity and spatial resolution. We present a benchtop XFCT imaging system in which a superfine pencil-beam X-ray source and a ring of X-ray spectrometers were simulated using GATE (Geant4 Application for Tomographic Emission) Monte Carlo software. An accelerated majorization minimization (MM) algorithm with an L1 regularization scheme was used to reconstruct the XFCT image of molybdenum (Mo) NP targets. Good target localization was achieved with a DICE coefficient of 88.737%. The reconstructed signal of the targets was found to be proportional to the target concentrations if detector number, detector placement, and angular projection number are optimized. The MM algorithm performance was compared with the maximum likelihood expectation maximization (ML-EM) and filtered back projection (FBP) algorithms. Our results indicate that the MM algorithm is superior to the ML-EM and FBP algorithms. We found that the MM algorithm was able to reconstruct XFCT targets as small as 0.25 mm in diameter. We also found that measurements with three angular projections and a 20-detector ring are enough to reconstruct the XFCT images.
Download PDF150 Views
93 Downloads
Authors
- Changqing Li
Author
- Yile Fang
Author
- Michael Lun
Author
- Ignacio O Romero
Author