Hae Young Noh, Shijia Pan, Xiaofan Jiang, Stephen Xia, and 4 more November 5, 2018
Individual perspiration level indicates a person's physical status as well as their comfort level. Therefore, continuous perspiration level measurement enables people to monitor these conditions for applications including fitness assessment, athlete physical status monitoring, and patient/elderly care. Prior work on perspiration (sweat) sensing required the user either to be static or to wear the adhesive sensor directly on the skin, which limits users' mobility and comfort. In this paper, we present a novel conductive thread-based textile sensor that measures an individual's on-cloth sweat quantity. The sensor consists of three conductive threads. Each conductive thread is surrounded by a braided cotton cover. An additional braided cotton cover is placed outside the three conductive threads, holding them in a position that is stable for measurement. the sensor can be embedded at various locations on a person's clothing. When the person sweats, the cotton braids absorb the sweat and change the conductivity (resistance) between conductive threads. We used a voltage dividing circuit to measure this resistance as the sensor output (DC). We then conducted a sensor calibration to map this measured voltage to the quantity of electrolyte solution (with the same density as sweat) applied to the sensor. We used this sensor to measure individuals' perspiration quantity and infer their perceived perspiration levels. The system is able to limit the average prediction error to 0.4 levels when compared to five pre-defined perceived perspiration levels.
Download PDF146 Views
90 Downloads
Metadata
- AuthorsHae Young Noh, Shijia Pan, Xiaofan Jiang, Stephen Xia, Ji Jia, Chengtian Xu, Pei Zhang, Peter Wei
- Deposited December 21, 2021
- Available December 21, 2021
- ISSN--
- Text VersionPMC6263898.pdf.txt
- PDF VersionPMC6263898.pdf