Wireless sensor networks enable dense sensing of the environment, offering unprecedented opportunities for observing the physical world. Centralized data collection and analysis adversely impact sensor node lifetime. Previous sensor network research has, therefore, focused on in network aggregation and query processing, but has done so for applications where the features of interest are known a priori. When features are not known a priori, as is the case with many scientific applications in dense sensor arrays, efficient support for multi-resolution storage and iterative, drill-down queries is essential. Our system demonstrates the use of in-network wavelet-based summarization and progressive aging of summaries in support of longterm querying in storage and communication-constrained networks. We evaluate the performance of our linux implementation and show that it achieves: (a) low communication overhead for multi-resolution summarization, (b) highly efficient drill-down search over such summaries, and (c) efficient use of network storage capacity through load-balancing and progressive aging of summaries.