Aedes aegypti is associated with dengue, yellow fever, chikungunya and Zika viruses. This vector is widespread in tropical and subtropical areas, and can also occur in temperate areas at higher latitudes. The geographical distribution of Ae. aegypti continues to spread due to human activities. This is the first study to examine the population genetic structure of this insect in El Salvador, Central America.
Methods
Aedes aegypti larvae were collected from six geographical regions of El Salvador: Sonsonate, San Salvador, Chalatenango, Usulután, San Miguel and Morazán. Larvae were raised into adults, identified and preserved. Two molecular markers, amplified fragment length polymorphism (AFLP) genotyping and mitochondrial DNA (mtDNA) cytochrome c oxidase subunit 1 (cox1) sequencing, were used to investigate population genetic structure.
Results
Structure analysis found two genetically distinct populations; one occurs predominantly in the north and west, and a mix of two populations occurs in the southeast of the country. Genetic distances ranged from 0.028 (2.8%) to 0.091 (9%), and an AMOVA analysis found 11% variation between populations. Mitochondrial DNA cox1 sequences produced a haplotype network which consisted of 3 haplogroups and 10 haplotypes. Haplogroup 1 had low haplotype and nucleotide diversity and was found in all six regions. Haplogroups 2 and 3 had higher haplotype and nucleotide diversity, and were less abundant; haplogroup 3 was found in only 3 of the six regions studied. Bottleneck tests were significant, suggesting that populations had undergone a recent bottleneck. A maximum likelihood tree, which combined samples from this study with available sequences in GenBank, suggested that two genetically divergent lineages had been introduced.
Conclusions
Relatively high genetic diversity was found in Ae. aegypti in El Salvador. The mtDNA sequences clustered into two lineages, as found in previous studies. Samples in El Salvador may be introduced from regions in North and South America where past eradication was not complete. Future study of genotypes in surrounding countries would provide a more complete picture of the movement and potential source of introductions of this vector. The distribution of the lineages and haplogroups may further our understanding of the epidemiology of Ae. aegypti associated vector borne diseases.